论文标题
疾病势头:估计在超级繁殖的情况下的繁殖数
Disease Momentum: Estimating the Reproduction Number in the Presence of Superspreading
论文作者
论文摘要
对传染病研究的主要兴趣是感染者产生的新感染的平均数量。这种所谓的繁殖数对疾病进展具有重要意义。越来越多的文献表明,超级宣传,个人引起的新感染数量的显着差异在SARS-COV-2的传播中起着重要作用。在本文中,我们考虑了这种超级公平对繁殖数量估计以及未来病例的后续估计的影响。因此,我们对文献中当前使用的模型采用了一个简单的扩展,以估计繁殖数量,并提出了Covid-19在奥地利的进展的案例研究。我们的模型表明,繁殖数的估计不确定性随着超级扩展而增加,这可以提高预测间隔的性能。独立感兴趣的是透明公式的推导,该公式将超级扩展的程度与复制数的可靠间隔宽度联系在一起。这是一种有价值的启发式方法,可用于理解围绕疾病的不确定性。
A primary quantity of interest in the study of infectious diseases is the average number of new infections that an infected person produces. This so-called reproduction number has significant implications for the disease progression. There has been increasing literature suggesting that superspreading, the significant variability in number of new infections caused by individuals, plays an important role in the spread of SARS-CoV-2. In this paper, we consider the effect that such superspreading has on the estimation of the reproduction number and subsequent estimates of future cases. Accordingly, we employ a simple extension to models currently used in the literature to estimate the reproduction number and present a case-study of the progression of COVID-19 in Austria. Our models demonstrate that the estimation uncertainty of the reproduction number increases with superspreading and that this improves the performance of prediction intervals. Of independent interest is the derivation of a transparent formula that connects the extent of superspreading to the width of credible intervals for the reproduction number. This serves as a valuable heuristic for understanding the uncertainty surrounding diseases with superspreading.