论文标题

i3dol:无灾难性遗忘的增量3D对象学习

I3DOL: Incremental 3D Object Learning without Catastrophic Forgetting

论文作者

Dong, Jiahua, Cong, Yang, Sun, Gan, Ma, Bingtao, Wang, Lichen

论文摘要

3D对象分类引起了学术研究和工业应用的吸引力。但是,大多数现有的方法在面对常见的现实世界方案时需要访问过去3D对象类的训练数据:新的3D对象的新类以序列到达。此外,由于3D点云数据的不规则和冗余几何结构,高级方法的性能在过去的学习类(即灾难性遗忘)中急剧降低。为了应对这些挑战,我们提出了一种新的增量3D对象学习(即i3dol)模型,这是第一个不断学习3D对象的新类别的探索。具体而言,自适应几何质心模块旨在构建区分局部几何结构,可以更好地表征3D对象的不规则点云表示。之后,为了防止冗余几何信息带来的灾难性遗忘,开发了一种几何感知机制来量化局部几何结构的贡献,并探索具有较高贡献类逐渐学习的独特3D几何特征。同时,提出了一种得分公平补偿策略,以进一步减轻3D对象的过去和新类别之间的数据不平衡的数据引起的灾难性遗忘,并在验证阶段补偿新类别的偏见预测。 3D代表数据集的实验验证了我们的i3dol框架的优越性。

3D object classification has attracted appealing attentions in academic researches and industrial applications. However, most existing methods need to access the training data of past 3D object classes when facing the common real-world scenario: new classes of 3D objects arrive in a sequence. Moreover, the performance of advanced approaches degrades dramatically for past learned classes (i.e., catastrophic forgetting), due to the irregular and redundant geometric structures of 3D point cloud data. To address these challenges, we propose a new Incremental 3D Object Learning (i.e., I3DOL) model, which is the first exploration to learn new classes of 3D object continually. Specifically, an adaptive-geometric centroid module is designed to construct discriminative local geometric structures, which can better characterize the irregular point cloud representation for 3D object. Afterwards, to prevent the catastrophic forgetting brought by redundant geometric information, a geometric-aware attention mechanism is developed to quantify the contributions of local geometric structures, and explore unique 3D geometric characteristics with high contributions for classes incremental learning. Meanwhile, a score fairness compensation strategy is proposed to further alleviate the catastrophic forgetting caused by unbalanced data between past and new classes of 3D object, by compensating biased prediction for new classes in the validation phase. Experiments on 3D representative datasets validate the superiority of our I3DOL framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源