论文标题

使用深度学习生成模型的新2D材料的计算发现

Computational discovery of new 2D materials using deep learning generative models

论文作者

Song, Yuqi, Siriwardane, Edirisuriya M. Dilanga, Zhao, Yong, Hu, Jianjun

论文摘要

由于其独特的光电特性,二维(2D)材料已成为有前途的功能材料,例如半导体和光伏材料。虽然已经在现有材料数据库中筛选了数千件材料,但发现新的2D材料仍然具有挑战性。本文中,我们提出了一个深度学习生成模型,用于组成生成,并与随机森林的2D材料分类器相结合,以发现新的假设2D材料。此外,开发了基于模板的元素替代结构预测方法,以预测新预测的假设公式的子集的晶体结构,这使我们能够使用DFT计算确认其结构稳定性。到目前为止,我们已经发现了267,489个新的潜在2D材料组成,并通过DFT形成能量计算确认了十二个2D/分层材料。我们的结果表明,生成机器学习模型为探索新2D材料发现的庞大化学设计空间提供了一种有效的方法。

Two dimensional (2D) materials have emerged as promising functional materials with many applications such as semiconductors and photovoltaics because of their unique optoelectronic properties. While several thousand 2D materials have been screened in existing materials databases, discovering new 2D materials remains to be challenging. Herein we propose a deep learning generative model for composition generation combined with random forest based 2D materials classifier to discover new hypothetical 2D materials. Furthermore, a template based element substitution structure prediction approach is developed to predict the crystal structures of a subset of the newly predicted hypothetical formulas, which allows us to confirm their structure stability using DFT calculations. So far, we have discovered 267,489 new potential 2D materials compositions and confirmed twelve 2D/layered materials by DFT formation energy calculation. Our results show that generative machine learning models provide an effective way to explore the vast chemical design space for new 2D materials discovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源