论文标题
带有NEF切线束的投影性品种,处于积极特征
Projective varieties with nef tangent bundle in positive characteristic
论文作者
论文摘要
让$ x $是在一个积极特征$ p $的代数封闭字段上定义的平滑投影品种,其切线捆绑包为nef。我们证明,$ x $承认平滑的形态$ x \至m $,使纤维是带有NEF切线捆绑包的Fano品种,而$ T_M $在数值上是平坦的。我们还证明,极端宫缩是一种平稳的形态。 作为一个应用程序,我们证明,如果可以将Frobenius的形态抬高,则可以将Modulo $ p^2 $,然后$ x $允许,最多可以使用有限的étalegalois封面,将其一种平稳的形态置于普通的阿贝尔人品种,其纤维是投射空间的产物。
Let $X$ be a smooth projective variety defined over an algebraically closed field of positive characteristic $p$ whose tangent bundle is nef. We prove that $X$ admits a smooth morphism $X \to M$ such that the fibers are Fano varieties with nef tangent bundle and $T_M$ is numerically flat. We also prove that extremal contractions exist as smooth morphisms. As an application, we prove that, if the Frobenius morphism can be lifted modulo $p^2$, then $X$ admits, up to a finite étale Galois cover, a smooth morphism onto an ordinary abelian variety whose fibers are products of projective spaces.