论文标题

零售犯罪的因果学习

The Causal Learning of Retail Delinquency

论文作者

Huang, Yiyan, Leung, Cheuk Hang, Yan, Xing, Wu, Qi, Peng, Nanbo, Wang, Dongdong, Huang, Zhixiang

论文摘要

本文重点是借款人的信用决定发生变化时借款人还款的预期差异。经典估计器忽略了混杂效应,因此估计误差可能是宏伟的。因此,我们提出了另一种构建估计值的方法,以便可以大大减少误差。通过理论分析和数值测试的结合,提出的估计量被证明是公正,一致和鲁棒的。此外,我们比较了估计经典估计器与拟议估计器之间的因果量的力量。在各种模型中测试了比较,包括线性回归模型,基于树的模型和基于神经网络的模型,在不同的模拟数据集中,这些数据集表现出不同级别的因果关系,不同程度的非线性和不同的分布属性。最重要的是,我们将方法应用于由一家在电子商务和贷款业务中运营的全球技术公司提供的大型观察数据集。我们发现,如果正确解释了因果关系,估计误差的相对减少非常明显。

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源