论文标题

CT膜通过解开几何变形和照明变化的恢复:模拟数据集和深层模型

CT Film Recovery via Disentangling Geometric Deformation and Illumination Variation: Simulated Datasets and Deep Models

论文作者

Quan, Quan, Wang, Qiyuan, Li, Liu, Du, Yuanqi, Zhou, S. Kevin

论文摘要

尽管医学图像(例如计算机断层扫描(CT))以DICOM格式存储在医院PAC中,但在许多国家,将电影作为可转移的媒介打印出来,以进行自存储和次要咨询。同样,随着手机摄像机的普遍性,拍摄CT膜的照片很常见,不幸的是,这会遭受几何变形和照明变化。在这项工作中,我们研究了恢复CT电影的问题,该胶片标志着文献中的首次尝试,据我们所知。我们首先使用广泛使用的计算机图形软件搅拌器构建大型头部CT胶片数据库CTFILM20K,由大约20,000张图片组成。我们还记录了与几何变形有关(例如3D坐标,深度,正常和UV图)和照明变化(例如反击图)有关的所有随附信息。然后,我们提出了一个深层框架,以使用从CT膜中提取的多个地图进行协作指导恢复过程,以消除几何变形和照明变化。对模拟和真实图像进行的广泛实验证明了我们的方法优于以前的方法。 We plan to open source the simulated images and deep models for promoting the research on CT film recovery (https://anonymous.4open.science/r/e6b1f6e3-9b36-423f-a225-55b7d0b55523/).

While medical images such as computed tomography (CT) are stored in DICOM format in hospital PACS, it is still quite routine in many countries to print a film as a transferable medium for the purposes of self-storage and secondary consultation. Also, with the ubiquitousness of mobile phone cameras, it is quite common to take pictures of the CT films, which unfortunately suffer from geometric deformation and illumination variation. In this work, we study the problem of recovering a CT film, which marks the first attempt in the literature, to the best of our knowledge. We start with building a large-scale head CT film database CTFilm20K, consisting of approximately 20,000 pictures, using the widely used computer graphics software Blender. We also record all accompanying information related to the geometric deformation (such as 3D coordinate, depth, normal, and UV maps) and illumination variation (such as albedo map). Then we propose a deep framework to disentangle geometric deformation and illumination variation using the multiple maps extracted from the CT films to collaboratively guide the recovery process. Extensive experiments on simulated and real images demonstrate the superiority of our approach over the previous approaches. We plan to open source the simulated images and deep models for promoting the research on CT film recovery (https://anonymous.4open.science/r/e6b1f6e3-9b36-423f-a225-55b7d0b55523/).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源