论文标题

深网中的内核分类

Kernelized Classification in Deep Networks

论文作者

Jayasumana, Sadeep, Ramalingam, Srikumar, Kumar, Sanjiv

论文摘要

我们为深网提供了一个内核分类层。尽管传统的深网引入了代表性(特征)学习的大量非线性,但它们几乎普遍地使用了学习的特征向量上的线性分类器。我们通过在训练过程中使用核心跨透明术损失函数和测试过程中的SCORER函数来提倡非线性分类层。但是,内核的选择仍然是一个挑战。为了解决这个问题,我们从理论上说明了适用于我们问题设置的所有可能积极的确定内核进行优化的可能性。然后,该理论用于设备一个新的内核分类层,该分类层在深网本身中自动学习给定问题的最佳内核函数。我们在几个数据集和任务上显示了所提出的非线性分类层的有用性。

We propose a kernelized classification layer for deep networks. Although conventional deep networks introduce an abundance of nonlinearity for representation (feature) learning, they almost universally use a linear classifier on the learned feature vectors. We advocate a nonlinear classification layer by using the kernel trick on the softmax cross-entropy loss function during training and the scorer function during testing. However, the choice of the kernel remains a challenge. To tackle this, we theoretically show the possibility of optimizing over all possible positive definite kernels applicable to our problem setting. This theory is then used to device a new kernelized classification layer that learns the optimal kernel function for a given problem automatically within the deep network itself. We show the usefulness of the proposed nonlinear classification layer on several datasets and tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源