论文标题
为了在广义的Aubry-André模型中寻找具有矩阵产品状态的多体迁移率边缘
In search of a many-body mobility edge with matrix product states in a Generalized Aubry-André model with interactions
论文作者
论文摘要
我们研究了使用Shift Invert iNvert Matrix产品状态(SIMPS)算法[Phys。莱特牧师。 118,017201(2017)]。非相互作用的GAA模型是具有自duality诱导的迁移率边缘的一维准膜模型。在互动案例中搜索多体的移动性边缘,我们利用SIMP的优势以能量解决的方式瞄准了多体状态,并且不需要所有多体状态都可以定位以使某些人融合。我们的分析表明,在存在单粒子迁移率边缘的情况下,目标状态既不匹配“ MBL样”完全融合的局部状态,也不匹配SIMP未能收敛的完全脱下位置的情况。我们将算法的输出基于算法的输出,以提供完全收敛的“ MBL样”局部状态以及SIMP无法收敛的DELACALIZED参数。在中间情况下,参数会产生单粒子迁移率边缘,我们发现多体状态会发展出熵振荡,这是在较大键尺寸下切开位置的函数。这些在较大的键尺寸上的振荡也出现在完全放置的基准中,而不是完全偏置的基准测试,既出现在带边缘和中心,也可能表明融合到非热状态(局部化或关键)。
We investigate the possibility of a many-body mobility edge in the generalized Aubry-André (GAA) model with interactions using the Shift-Invert Matrix Product States (SIMPS) algorithm [Phys. Rev. Lett. 118, 017201 (2017)]. The non-interacting GAA model is a one-dimensional quasiperiodic model with a self-duality-induced mobility edge. To search for a many-body mobility edge in the interacting case, we exploit the advantages of SIMPS that it targets many-body states in an energy-resolved fashion and does not require all many-body states to be localized for some to converge. Our analysis indicates that the targeted states in the presence of the single-particle mobility edge match neither `MBL-like' fully-converged localized states nor the fully delocalized case where SIMPS fails to converge. We benchmark the algorithm's output both for parameters that give fully converged, `MBL-like' localized states and for delocalized parameters where SIMPS fails to converge. In the intermediate cases, where the parameters produce a single-particle mobility edge, we find many-body states that develop entropy oscillations as a function of cut position at larger bond dimensions. These oscillations at larger bond dimensions, which are also found in the fully-localized benchmark but not the fully-delocalized benchmark, occur both at the band edge and center and may indicate convergence to a non-thermal state (either localized or critical).