论文标题

汉密尔顿系统的部分

Sections of Hamiltonian Systems

论文作者

Kourliouros, Konstantinos

论文摘要

哈密​​顿系统的一部分是系统相位空间中的一个hyperface,通常代表一组单方面的约束(例如边界,障碍物或一组可接受的状态)。在本文中,我们为常规(非单明)哈密顿系统的所有典型奇异性提供了局部分类结果,这是一个与单方面约束的哈密顿系统典型奇异性分类的问题。特别是,我们提供了具有功能不变的确切正常形式的完整列表,我们展示了如何通过使用规定的(惠特尼(Whitney-type))奇异性对映射进行映射的相关性分类,自然定义在汉密尔顿系统的减少相空间上。

A section of a Hamiltonian system is a hypersurface in the phase space of the system, usually representing a set of one-sided constraints (e.g. a boundary, an obstacle or a set of admissible states). In this paper we give local classification results for all typical singularities of sections of regular (non-singular) Hamiltonian systems, a problem equivalent to the classification of typical singularities of Hamiltonian systems with one-sided constraints. In particular we give a complete list of exact normal forms with functional invariants, and we show how these are related/obtained by the symplectic classification of mappings with prescribed (Whitney-type) singularities, naturally defined on the reduced phase space of the Hamiltonian system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源