论文标题
稳定地图到looijenga对:Orbifold示例
Stable maps to Looijenga pairs: orbifold examples
论文作者
论文摘要
在ARXIV:2011.08830中,我们建立了一系列通信,这些通讯是五种列出的log calabi-yau表面理论,即与$ y $ y $ y $ y $ y $ y $ y $ y $ y $ y $ d = d_1 +d_1 +d_1 +d_l $ y $ y $ y $ y $ y $ d_i $ d_i $ d_i $ d_i $ d_i $ d_if和nef。在本文中,我们探讨了对$ y $的概括,这是一个光滑的deligne-mumford堆栈,具有尺寸为2的投射粗型物空间,而$ d_i $ nef $ \ mathbb {q} $ - 卡地亚分区。我们特别考虑三个无限的Orbifold log calabi-yau表面,对于它们,我们每个人都提供了最大触点log gromov-witten $(y,d)$的封闭式解决方案,$ \ bigoplus_i \ mathcal {oov {oof {oov {oof {oov {oov form form of tor $(y,d)$的$(y,d)。在$(y,d)$相关的卡拉比野3-孔中的orbi branes。我们还考虑了这些不变性基础的BPS积分结构的新示例,并将其与$(y,d)$指定的对称颤动的Donaldson-Thomas理论以及与一类开放/封闭的BPS不变性相关联。
In arXiv:2011.08830 we established a series of correspondences relating five enumerative theories of log Calabi-Yau surfaces, i.e. pairs $(Y,D)$ with $Y$ a smooth projective complex surface and $D=D_1+\dots +D_l$ an anticanonical divisor on $Y$ with each $D_i$ smooth and nef. In this paper we explore the generalisation to $Y$ being a smooth Deligne-Mumford stack with projective coarse moduli space of dimension 2, and $D_i$ nef $\mathbb{Q}$-Cartier divisors. We consider in particular three infinite families of orbifold log Calabi-Yau surfaces, and for each of them we provide closed form solutions of the maximal contact log Gromov-Witten theory of the pair $(Y,D)$, the local Gromov-Witten theory of the total space of $\bigoplus_i \mathcal{O}_Y(-D_i)$, and the open Gromov-Witten theory of toric orbi-branes in a Calabi-Yau 3-orbifold associated to $(Y,D)$. We also consider new examples of BPS integral structures underlying these invariants, and relate them to the Donaldson-Thomas theory of a symmetric quiver specified by $(Y,D)$, and to a class of open/closed BPS invariants.