论文标题
用全球拟合方法提取的铂金晶状体耦合的超快晶格动力学和电子偶联方法,用于时间分辨的多晶衍射数据
Ultrafast lattice dynamics and electron-phonon coupling in platinum extracted with a global fitting approach for time-resolved polycrystalline diffraction data
论文作者
论文摘要
电子 - 音波耦合的定量知识对于许多应用以及对非平衡松弛过程的基本理解都很重要。时间分辨的衍射通过其对激光引起的晶格动力学的敏感性直接访问了这些知识。在这里,我们提出了一种分析时间分辨多晶衍射数据的方法。两步例程用于最小化时间相关的拟合拟合参数。通过找到与完整的瞬态衍射模式的最佳拟合,而不是通过分析单个Debye-Scherrer环的瞬态变化来提取晶格动力学。我们将这种方法应用于铂,这是新型光催化和自旋形式应用的重要组成部分,为此,对于电子偶联参数$ g_ \ mathrm {ep} $,文献值有很大的文献变化。基于原子平均位移(MSD)的提取的演变和使用两个温度模型(TTM),我们获得了$ g_ \ mathrm {ep} =(3.9 \ pm0.2)\ cdot10^{17} \ frac {\ mathrm {w}} {\ mathrm {m Mathrm {m}^3 \ hspace {1pt} {1pt} \ mathrm {k k}} $(统计错误)。 We find that at least up to an absorbed energy density of $124\hspace{2pt}\frac{\mathrm{J}}{\mathrm{cm}^3}$, $G_\mathrm{ep}$ is not fluence-dependent.我们对铂金晶格动力学的结果提供了对电子偶联和声子热化的见解,并构成了在非平衡条件下基于铂的异质结构的定量描述的基础。
Quantitative knowledge of electron-phonon coupling is important for many applications as well as for the fundamental understanding of nonequilibrium relaxation processes. Time-resolved diffraction provides direct access to this knowledge through its sensitivity to laser-induced lattice dynamics. Here, we present an approach for analyzing time-resolved polycrystalline diffraction data. A two-step routine is used to minimize the number of time-dependent fit parameters. The lattice dynamics are extracted by finding the best fit to the full transient diffraction pattern rather than by analyzing transient changes of individual Debye-Scherrer rings. We apply this approach to platinum, an important component of novel photocatalytic and spintronic applications, for which a large variation of literature values exists for the electron-phonon coupling parameter $G_\mathrm{ep}$. Based on the extracted evolution of the atomic mean squared displacement (MSD) and using a two-temperature model (TTM), we obtain $G_\mathrm{ep}=(3.9\pm0.2)\cdot10^{17}\frac{\mathrm{W}}{\mathrm{m}^3\hspace{1pt}\mathrm{K}}$ (statistical error). We find that at least up to an absorbed energy density of $124\hspace{2pt}\frac{\mathrm{J}}{\mathrm{cm}^3}$, $G_\mathrm{ep}$ is not fluence-dependent. Our results for the lattice dynamics of platinum provide insights into electron-phonon coupling and phonon thermalization and constitute a basis for quantitative descriptions of platinum-based heterostructures in nonequilibrium conditions.