论文标题
关于$ \ mathcal {o} $ - 代数
On the chromatic localization of the homotopy completion tower for $\mathcal{O}$-algebras
论文作者
论文摘要
不连续性通勤环的完整塔是通勤代数的经典结构。在由代数在光谱operad上建模的结构化环光谱的环境中,类似结构是同型完成塔。此简短说明的目的是表明,与约翰逊 - 威尔逊频谱$ e(n)$通勤有关该塔的条款的本地化。
The completion tower of a nonunital commutative ring is a classical construction in commutative algebra. In the setting of structured ring spectra as modeled by algebras over a spectral operad, the analogous construction is the homotopy completion tower. The purpose of this brief note is to show that localization with respect to the Johnson-Wilson spectrum $E(n)$ commutes with the terms of this tower.