论文标题

无监督人员重新识别的摄像头代理

Camera-aware Proxies for Unsupervised Person Re-Identification

论文作者

Wang, Menglin, Lai, Baisheng, Huang, Jianqiang, Gong, Xiaojin, Hua, Xian-Sheng

论文摘要

本文解决了不需要注释的纯监督人重新识别(RE-ID)问题。一些以前的方法采用聚类技术来生成伪标签,并使用生产的标签逐渐训练Re-ID模型。这些方法相对简单但有效。但是,大多数基于聚类的方法将每个群集作为伪身份类别,忽略了主要由相机视图的变化引起的较大的ID内差异。为了解决这个问题,我们建议将每个群集分为多个代理,每个代理代表来自同一相机的实例。这些摄像头感知的代理使我们能够处理大型的ID内差异,并生成更可靠的伪标签用于学习。基于摄像头的代理,我们为我们的重新ID模型设计了内部和相机间的对比度学习组件,以有效地学习摄像机内部和跨摄像头的ID歧视能力。同时,还设计了代理均衡的抽样策略,这进一步促进了我们的学习。在三个大规模重新ID数据集上进行的广泛实验表明,我们提出的方法的表现优于最无监督的方法。特别是,在具有挑战性的MSMT17数据集中,与第二名相比,我们获得了$ 14.3 \%$ nark-1和$ 10.2 \%$ $ $的地图改进。代码可在:\ texttt {https://github.com/terminator8758/cap-master}中获得。

This paper tackles the purely unsupervised person re-identification (Re-ID) problem that requires no annotations. Some previous methods adopt clustering techniques to generate pseudo labels and use the produced labels to train Re-ID models progressively. These methods are relatively simple but effective. However, most clustering-based methods take each cluster as a pseudo identity class, neglecting the large intra-ID variance caused mainly by the change of camera views. To address this issue, we propose to split each single cluster into multiple proxies and each proxy represents the instances coming from the same camera. These camera-aware proxies enable us to deal with large intra-ID variance and generate more reliable pseudo labels for learning. Based on the camera-aware proxies, we design both intra- and inter-camera contrastive learning components for our Re-ID model to effectively learn the ID discrimination ability within and across cameras. Meanwhile, a proxy-balanced sampling strategy is also designed, which facilitates our learning further. Extensive experiments on three large-scale Re-ID datasets show that our proposed approach outperforms most unsupervised methods by a significant margin. Especially, on the challenging MSMT17 dataset, we gain $14.3\%$ Rank-1 and $10.2\%$ mAP improvements when compared to the second place. Code is available at: \texttt{https://github.com/Terminator8758/CAP-master}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源