论文标题

高保真神经人类运动从单眼视频转移

High-Fidelity Neural Human Motion Transfer from Monocular Video

论文作者

Kappel, Moritz, Golyanik, Vladislav, Elgharib, Mohamed, Henningson, Jann-Ole, Seidel, Hans-Peter, Castillo, Susana, Theobalt, Christian, Magnor, Marcus

论文摘要

基于视频的人类运动转移在源运动后创建了人类的视频动画。当前方法对紧身受试者显示出了显着的结果。但是,缺乏对合理服装动力学的时间一致的处理,包括细节和高频细节,显着限制了可达到的视觉质量。我们在文献中首次解决了这些局限性,并提出了一个新框架,该框架对几种宽松的服装进行了高保真和暂时性的人类运动转移,并具有自然依赖性的非刚性变形。与以前的技术相反,我们在三个随后的阶段进行图像产生,从而综合了人类的形状,结构和外观。鉴于演员的单眼RGB视频,我们训练一堆经常出现的深层神经网络,从2D姿势及其时间导数产生这些中间表示。将困难的运动转移问题分解为了解时间运动上下文的子任务,这有​​助于我们通过合理的动力学和姿势依赖性细节综合结果。它还可以通过操纵各个框架阶段来控制结果。在实验结果中,我们在视频现实主义方面极大地胜过最先进的。我们的代码和数据将公开可用。

Video-based human motion transfer creates video animations of humans following a source motion. Current methods show remarkable results for tightly-clad subjects. However, the lack of temporally consistent handling of plausible clothing dynamics, including fine and high-frequency details, significantly limits the attainable visual quality. We address these limitations for the first time in the literature and present a new framework which performs high-fidelity and temporally-consistent human motion transfer with natural pose-dependent non-rigid deformations, for several types of loose garments. In contrast to the previous techniques, we perform image generation in three subsequent stages, synthesizing human shape, structure, and appearance. Given a monocular RGB video of an actor, we train a stack of recurrent deep neural networks that generate these intermediate representations from 2D poses and their temporal derivatives. Splitting the difficult motion transfer problem into subtasks that are aware of the temporal motion context helps us to synthesize results with plausible dynamics and pose-dependent detail. It also allows artistic control of results by manipulation of individual framework stages. In the experimental results, we significantly outperform the state-of-the-art in terms of video realism. Our code and data will be made publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源