论文标题
虚假共振疾病及其如何治愈:应用于峡谷的地震反应
The spurious resonance disease and how to cure it: application to the seismic response of a canyon
论文作者
论文摘要
采用三种类型的边界积分方程(BIE)方法获得波浪散发问题的封闭形式解,这些解决方案与确切的,封闭形式(参考)的溶液(从变量的分离技术)中进行了比较。该问题涉及Dirichlet(D)或Neumann(N)边界条件(BC),用于散射器,该散射器是提交给一个或两个入射波的圆柱体。这三种BIE方法导致牵引力(对于D-BC)或边界位移(对于N-BC)的表达式不同,通过该表达式,预测了许多共振,其发生的频率与另一种方法到另一种方法的频率不同。这被解释为这是三种方法通常缺陷的迹象,共鸣是“虚假的”。这种“疾病”是通过将两个Bie组合成一个方式来治愈的,使所产生的BIE产生与没有伪共振的确切参考溶液相同的封闭式解决方案。
Three types of boundary integral equation (BIE) methods are employed to obtain closed-form solutions of a wave-scattering problem which are compared to the exact, closed-form (reference), solution deriving from the separation-of-variables technique. The problem involves either Dirichlet (D) or Neumann (N) boundary conditions (BC) for a scatterer that is a circular cylinder submitted to one or two incident waves. The three BIE methods lead to different expressions for the traction (for D-BC) or boundary displacement (for N-BC) by which numerous resonances are predicted whose frequency of occurrence differs from one method to another. This is interpreted as being the sign that the three methods are generally-defective and the resonances are 'spurious'. This 'disease' is cured by combining two BIE into one in such a way that the resulting BIE gives rise to a closed-form solution identical to the exact reference solution devoid of spurious resonances.