论文标题

光滑的涂鸦组,iii:平滑度定理

Smooth profinite groups, III: the Smoothness Theorem

论文作者

De Clercq, Charles, Florence, Mathieu

论文摘要

令$ p $为素数。在本文中,我们证明了平滑度定理,该定理断言$(1,1)$ - 循环对为$(n,1)$ - 环体元素,对于所有$ n \ geq 1 $。在Galois同胞学的特殊情况下,平滑度定理提供了一种新的证据,证明了规范残基同构定理,这完全是与动机共同体学的完全脱节。这种方法的副产品是,后者定理遵循单独的田野$ p^2 $ kummer理论。此外,我们将其扩展为从绝对的galois域组到代数曲线(不一定是光滑,也不是正确的)曲线的代数基本组。

Let $p$ be a prime. In this article, we prove the Smoothness Theorem, which asserts that a $(1,1)$-cyclotomic pair is $(n,1)$-cyclotomic, for all $n \geq 1$. In the particular case of Galois cohomology, the Smoothness Theorem provides a new proof of the Norm Residue Isomorphism Theorem, entirely disjoint from motivic cohomology. A byproduct of this approach, is that the latter Theorem follows from mod $p^2$ Kummer theory for fields alone. We moreover extend it, from absolute Galois groups of fields, to algebraic fundamental groups of (not necessarily smooth, nor proper) curves over algebraically closed fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源