论文标题

由冷气降水和AGN射流驱动的多相内培养基中的非kolmogorov湍流

Non-Kolmogorov turbulence in multiphase intracluster medium driven by cold gas precipitation and AGN jets

论文作者

Wang, C., Ruszkowski, M., Pfrommer, C., Oh, S. Peng, Yang, H. -Y. K.

论文摘要

AGN反馈负责在椭圆星系和星系簇的扩展光环中维持血浆中的血浆。热气体中的局部热不稳定性导致形成沉淀的冷气云,这些冷气云为中央超级黑洞供应,从而加热热气体并保持全局热平衡。我们在类似Perseus的星系簇中对自调节的AGN反馈进行三维MHD模拟,目的是了解反馈物理学对ICM热和冷阶段湍流特性的影响。我们发现,通常,冷相速度结构函数(VSF)比Kolmogorov理论的预测陡峭。我们将冷相VSF的陡峭斜率的物理起源归因于主要是由引力加速作用在弹道云上的湍流运动的驱动。我们证明,在纯净的流体动力学案例中,沉淀的冷丝可能是驱动热ICM中湍流的主要剂。有利于这一假设的论点是:(i)冷相质量在内部冷芯中的热气体质量上占主导地位; (ii)空间相关的热气速度; (iii)冷相和热相速度分布都径向偏见。我们表明,在MHD案例中,环境热介质(不包括喷气锥区域)中的湍流也可以由AGN喷气机驱动。然后,由于环境气体和AGN喷气机的磁场,通过增强的耦合来促进驾驶。在MHD情况下,湍流可能是由AGN射流搅拌和细丝运动的组合驱动的。我们得出的结论是,未来的观察,包括来自高空间和光谱分辨率X射线任务的观察结果,可能有助于通过量化ICM中的多温度VSF来限制自我调节的AGN反馈。

AGN feedback is responsible for maintaining plasma in global thermal balance in extended halos of elliptical galaxies and galaxy clusters. Local thermal instability in the hot gas leads to the formation of precipitating cold gas clouds that feed the central supermassive black holes, thus heating the hot gas and maintaining global thermal equilibrium. We perform three dimensional MHD simulations of self-regulated AGN feedback in a Perseus-like galaxy cluster with the aim of understanding the impact of the feedback physics on the turbulence properties of the hot and cold phases of the ICM. We find that, in general, the cold phase velocity structure function (VSF) is steeper than the prediction from Kolmogorov's theory. We attribute the physical origin of the steeper slope of the cold phase VSF to the driving of turbulent motions primarily by the gravitational acceleration acting on the ballistic clouds. We demonstrate that, in the pure hydrodynamical case, the precipitating cold filaments may be the dominant agent driving turbulence in the hot ICM. The arguments in favor of this hypothesis are that: (i) the cold phase mass dominates over hot gas mass in the inner cool core; (ii) hot and cold gas velocities are spatially correlated; (iii) both the cold and hot phase velocity distributions are radially biased. We show that, in the MHD case, the turbulence in the ambient hot medium (excluding the jet cone regions) can also be driven by the AGN jets. The driving is then facilitated by enhanced coupling due to magnetic fields of the ambient gas and the AGN jets. In the MHD case, turbulence may thus be driven by a combination of AGN jet stirring and filament motions. We conclude that future observations, including those from high spatial and spectral resolution X-ray missions, may help to constrain self-regulated AGN feedback by quantifying the multi-temperature VSF in the ICM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源