论文标题
仿射密度,冯·诺伊曼(Von Neumann)维度和Perelomov的问题
Affine density, von Neumann dimension and a problem of Perelomov
论文作者
论文摘要
我们为Perelomov的1972年问题提供了一种解决方案,该问题是关于存在相变的存在(在信号分析中称为“ nyquist率”),以确定紫红色群体标记的某些仿射相干状态的基础特性。正如Perelomov所建议的那样,根据基本区域的双曲线体积进行过渡。该解决方案是$ psl(2,\ mathbb {r})$变体的一种更通用的形式(在相位空间中),这是1989年的Kristian Seip关于小波帧的猜想,其中作为某个本地化操作员的痕迹获得了相同的“ Nyquist速率”值。该证明包括首先将问题与von Neumann代数理论联系起来,通过引入$ psl(2,\ mathbb {r})$的新型投影表示形式,该表示在非分析伯格曼型空间上作用。然后,由于沃恩·琼斯爵士,我们适应了一种计算von Neumann尺寸的新方法。我们的解决方案以“ Nyquist速率”的形式包含必要的条件,从相干状态的Riesz序列和插值序列采样。它们具有包含Maass操作员及其正交总和的多序分析函数空间的无限序列。在温和的边界内,我们表明我们的结果是最好的,通过将我们的函数空间序列描述为非分析$ psl(2,\ mathbb {r})$表示下的唯一不变空间。
We provide a solution to Perelomov's 1972 problem concerning the existence of a phase transition (known in signal analysis as 'Nyquist rate') determining the basis properties of certain affine coherent states labelled by Fuchsian groups. As suggested by Perelomov, the transition is given according to the hyperbolic volume of the fundamental region. The solution is a more general form (in phase space) of the $PSL(2,\mathbb{R})$ variant of a 1989 conjecture of Kristian Seip about wavelet frames, where the same value of `Nyquist rate' is obtained as the trace of a certain localization operator. The proof consists of first connecting the problem to the theory of von Neumann algebras, by introducing a new class of projective representations of $PSL(2,\mathbb{R})$ acting on non-analytic Bergman-type spaces. We then adapt to this setting a new method for computing von Neumann dimensions, due to Sir Vaughan Jones. Our solution contains necessary conditions in the form of a `Nyquist rate' dividing frames from Riesz sequences of coherent states and sampling from interpolating sequences. They hold for an infinite sequence of spaces of polyanalytic functions containing the eigenspaces of the Maass operator and their orthogonal sums. Within mild boundaries, we show that our result is best possible, by characterizing our sequence of function spaces as the only invariant spaces under the non-analytic $PSL(2,\mathbb{R})$-representations.