论文标题

FEDERANK:用联合推荐系统的用户控制反馈

FedeRank: User Controlled Feedback with Federated Recommender Systems

论文作者

Anelli, Vito Walter, Deldjoo, Yashar, Di Noia, Tommaso, Ferrara, Antonio, Narducci, Fedelucio

论文摘要

推荐系统已证明数据可用性如何减轻我们的日常数字生活。但是,数据隐私是数字时代最突出的问题之一。经过几次数据泄露和隐私丑闻之后,用户现在担心共享其数据。在过去的十年中,联邦学习已成为一种新的保护隐私的机器学习范式。它通过在不收集中央存储库中收集数据的情况下处理数据来工作。我们提出了Federank(https://split.to/federank),一种联合推荐算法。该系统在每个设备上学习一个个人分解模型。模型的培训是中央服务器和联合客户端之间的同步过程。 Federank以分布式的方式处理计算建议,并允许用户控制他们想要共享的数据的一部分。通过与最先进的算法进行比较,即使使用一小部分共享用户数据,广泛的实验也显示了Federank的有效性。对建议列表的多样性和新颖性的进一步分析确保了算法在实际生产环境中的适用性。

Recommender systems have shown to be a successful representative of how data availability can ease our everyday digital life. However, data privacy is one of the most prominent concerns in the digital era. After several data breaches and privacy scandals, the users are now worried about sharing their data. In the last decade, Federated Learning has emerged as a new privacy-preserving distributed machine learning paradigm. It works by processing data on the user device without collecting data in a central repository. We present FedeRank (https://split.to/federank), a federated recommendation algorithm. The system learns a personal factorization model onto every device. The training of the model is a synchronous process between the central server and the federated clients. FedeRank takes care of computing recommendations in a distributed fashion and allows users to control the portion of data they want to share. By comparing with state-of-the-art algorithms, extensive experiments show the effectiveness of FedeRank in terms of recommendation accuracy, even with a small portion of shared user data. Further analysis of the recommendation lists' diversity and novelty guarantees the suitability of the algorithm in real production environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源