论文标题
吠叫右树:搜索分子合成dags的方法
Barking up the right tree: an approach to search over molecule synthesis DAGs
论文作者
论文摘要
在设计具有特定特性的新分子时,不仅重要的是要制造的东西,而且至关重要的是如何制作。这些说明形成了一个定向无环图(DAG)的合成,描述了如何通过化学反应递归合并一个简单的构件的大词汇,以创建更复杂的感兴趣分子。相比之下,许多当前的分子深层生成模型忽略了综合性。因此,我们提出了一个深层生成模型,该模型通过直接输出分子合成DAG来更好地代表现实世界过程。我们认为这提供了明智的感应偏见,以确保我们的模型在化学家也可以使用的相同化学空间以及可解释性上进行搜索。我们表明,我们的方法能够很好地对化学空间进行建模,从而产生各种不同的分子,并允许对固有约束的问题进行不受约束的优化:最大化某些化学特性,使发现的分子可合成。
When designing new molecules with particular properties, it is not only important what to make but crucially how to make it. These instructions form a synthesis directed acyclic graph (DAG), describing how a large vocabulary of simple building blocks can be recursively combined through chemical reactions to create more complicated molecules of interest. In contrast, many current deep generative models for molecules ignore synthesizability. We therefore propose a deep generative model that better represents the real world process, by directly outputting molecule synthesis DAGs. We argue that this provides sensible inductive biases, ensuring that our model searches over the same chemical space that chemists would also have access to, as well as interpretability. We show that our approach is able to model chemical space well, producing a wide range of diverse molecules, and allows for unconstrained optimization of an inherently constrained problem: maximize certain chemical properties such that discovered molecules are synthesizable.