论文标题

拓扑重构下的最佳功率流问题的元学习方法

A Meta-Learning Approach to the Optimal Power Flow Problem Under Topology Reconfigurations

论文作者

Chen, Yexiang, Lakshminarayana, Subhash, Maple, Carsten, Poor, H. Vincent

论文摘要

最近,人们对采用深层神经网络(DNN)的兴趣激增,以解决功率系统中的最佳功率流(OPF)问题。与使用常规优化求解器相比,使用训练有素的DNN计算最佳生成调度决策所花费的时间要少得多。但是,现有工作的一个主要缺点是,对机器学习模型进行了特定系统拓扑的培训。因此,只要系统拓扑保持不变,DNN预测才有用。对系统拓扑的更改(由系统操作员启动)将需要重新培训DNN,这会导致大量的培训开销,并需要大量的培训数据(与新系统拓扑相对应)。为了克服这一缺点,我们提出了一种基于DNN的OPF预测变量,该预测因子是使用元学习方法(MTL)方法训练的。这种方法背后的关键思想是找到一个共同的初始化向量,该向量可以为任何系统拓扑进行快速培训。通过使用基准IEEE BUS系统模拟来验证开发的OPF预测器。结果表明,MTL方法达到了显着的训练速度,并且只需要几个梯度步骤,并具有一些数据样本来实现高OPF预测的准确性。

Recently, there has been a surge of interest in adopting deep neural networks (DNNs) for solving the optimal power flow (OPF) problem in power systems. Computing optimal generation dispatch decisions using a trained DNN takes significantly less time when compared to using conventional optimization solvers. However, a major drawback of existing work is that the machine learning models are trained for a specific system topology. Hence, the DNN predictions are only useful as long as the system topology remains unchanged. Changes to the system topology (initiated by the system operator) would require retraining the DNN, which incurs significant training overhead and requires an extensive amount of training data (corresponding to the new system topology). To overcome this drawback, we propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach. The key idea behind this approach is to find a common initialization vector that enables fast training for any system topology. The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems. The results show that the MTL approach achieves significant training speeds-ups and requires only a few gradient steps with a few data samples to achieve high OPF prediction accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源