论文标题

通过人工神经网络通过快照分析非平衡量子状态

Analyzing non-equilibrium quantum states through snapshots with artificial neural networks

论文作者

Bohrdt, A., Kim, S., Lukin, A., Rispoli, M., Schittko, R., Knap, M., Greiner, M., Léonard, J.

论文摘要

当前的量子模拟实验开始探索以前难以访问的系统大小和时间尺度方面的非平衡多体动力学。因此,出现了一个问题,最适合研究这种量子多体系统中的动力学。使用机器学习技术,我们研究了相互作用的量子系统的动力学,尤其是进行了相互作用的量子系统的热化行为,该系统经历了从厄尔贡到多体局部阶段的动态相变。对神经网络进行了训练,可以区分非平衡与热平衡数据,并且网络性能是对系统的热化行为的探测。我们使用用量子气显微镜拍摄的超电原子的实验快照来测试我们的方法。我们的结果为分析高度输入的大规模量子状态的系统规模提供了一条途径,在该系统大小中,传统可观察物的数值计算变得具有挑战性。

Current quantum simulation experiments are starting to explore non-equilibrium many-body dynamics in previously inaccessible regimes in terms of system sizes and time scales. Therefore, the question emerges which observables are best suited to study the dynamics in such quantum many-body systems. Using machine learning techniques, we investigate the dynamics and in particular the thermalization behavior of an interacting quantum system which undergoes a dynamical phase transition from an ergodic to a many-body localized phase. A neural network is trained to distinguish non-equilibrium from thermal equilibrium data, and the network performance serves as a probe for the thermalization behavior of the system. We test our methods with experimental snapshots of ultracold atoms taken with a quantum gas microscope. Our results provide a path to analyze highly-entangled large-scale quantum states for system sizes where numerical calculations of conventional observables become challenging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源