论文标题
$ππ$和$πk$散射的数据驱动分散分析
Data-driven dispersive analysis of the $ππ$ and $πK$ scattering
论文作者
论文摘要
我们使用部分波色散关系提出了谐振s波$π\至πk\ toπk\ $πk\ $πk\ $πk\ $πk\ $πk\ $πk\ $πk\的数据驱动分析。左侧切割的贡献是在适当构建的保形变量中使用泰勒扩展的。对实验和晶格数据以及ROY分析进行了拟合。对于$ππ$散射,我们通过包括$ k \ bar {k} $通道来提出单单和耦合通道分析。对于后者,中心结果是Omnès矩阵,它与最新的Roy和Roy-Steiner在$ππ\至ππ$和$ππ\ to K \ bar {k} $上的结果一致。通过分析延续到复杂的平面,我们发现了与最轻的标量共鸣$σ/f_0(500)$,$ f_0(980)$和$κ/k_0^*(700)$相关的,用于物理pion质量值,以及在$σ/f_0(500)$,$ ch $,$κ/k__0^**(700)的情况下(500)$(700)。
We present a data-driven analysis of the resonant S-wave $ππ\to ππ$ and $πK \to πK$ reactions using the partial-wave dispersion relation. The contributions from the left-hand cuts are accounted for using the Taylor expansion in a suitably constructed conformal variable. The fits are performed to experimental and lattice data as well as Roy analyses. For the $ππ$ scattering we present both a single- and coupled-channel analysis by including additionally the $K\bar{K}$ channel. For the latter the central result is the Omnès matrix, which is consistent with the most recent Roy and Roy-Steiner results on $ππ\to ππ$ and $ππ\to K\bar{K}$, respectively. By the analytic continuation to the complex plane, we found poles associated with the lightest scalar resonances $σ/f_0(500)$, $f_0(980)$, and $κ/K_0^*(700)$ for the physical pion mass value and in the case of $σ/f_0(500)$, $κ/K_0^*(700)$ also for unphysical pion mass values.