论文标题

关于重复代数的有限维模块的变形理论

On a deformation theory of finite dimensional modules over repetitive algebras

论文作者

Fonce-Camacho, Adriana, Giraldo, Hernán, Rizzo, Pedro, Vélez-Marulanda, José A.

论文摘要

令$λ$为代数封闭的字段$ \ mathbf {k} $的基本有限维数代数,让$ \widehatλ$为$λ$的重复代数。在本文中,我们证明,如果$ \ wideHat {v} $是左$ \wideHatλ$-模块,则具有有限维度的$ \ m \ m i \ mathbf {k} $,则$ \ wideHat {v} $具有确定的versal versal vermormation yormation Ring $ r(\widhatλ,\ widehatomentian in commotian nos n isthe n iS n iS notery, $ \ mathbf {k} $ - algebra的残基字段也同构为$ \ mathbf {k} $。我们还证明,只要$ r(\wideHatλ,\ wideHat {v})$是普遍的,只要$ \ usewise {\ mathrm {end}} _ {\wideHatλ}(\wideHatλ}(\ widehat {v} {v})= \ m m缩了\ mathbf {k} $,以及在这种情况下,$ r(服用Syzygies。我们将获得的结果应用于有限维数模块,而不是$ 2 $ -KRONECKER代数的重复代数,该代数为对象的变形理论提供了一种替代方法。

Let $Λ$ be a basic finite dimensional algebra over an algebraically closed field $\mathbf{k}$, and let $\widehatΛ$ be the repetitive algebra of $Λ$. In this article, we prove that if $\widehat{V}$ is a left $\widehatΛ$-module with finite dimension over $\mathbf{k}$, then $\widehat{V}$ has a well-defined versal deformation ring $R(\widehatΛ,\widehat{V})$, which is a local complete Noetherian commutative $\mathbf{k}$-algebra whose residue field is also isomorphic to $\mathbf{k}$. We also prove that $R(\widehatΛ,\widehat{V})$ is universal provided that $\underline{\mathrm{End}}_{\widehatΛ}(\widehat{V})=\mathbf{k}$ and that in this situation, $R(\widehatΛ,\widehat{V})$ is stable after taking syzygies. We apply the obtained results to finite dimensional modules over the repetitive algebra of the $2$-Kronecker algebra, which provides an alternative approach to the deformation theory of objects in the bounded derived category of coherent sheaves over $\mathbb{P}^1_{\mathbf{k}}$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源