论文标题

Facebook广告参与2016年俄罗斯积极措施运动

Facebook Ad Engagement in the Russian Active Measures Campaign of 2016

论文作者

Silva, Mirela, Giovanini, Luiz, Fernandes, Juliana, Oliveira, Daniela, Silva, Catia S.

论文摘要

本文研究了2015年6月至2017年8月在2016年美国大选的积极措施中,俄罗斯互联网研究机构(IRA)创建了3,517个Facebook广告。我们的目的是发掘与ADS的元数据,社会语言结构和情感相关的41个功能之间的广告参与之间的关系。我们的分析是三个方面:(i)通过相关分析了解参与度和特征之间的关系; (ii)找到通过特征选择预测参与度的最相关的特征子集; (iii)找到通过主题建模最能表征数据集的语义主题。我们发现广告支出,文本大小,广告寿命和情感是预测用户参与广告的最佳功能。此外,积极的情感广告比负面广告更具吸引力,社会语言特征(例如,使用与宗教相关的词语)被确定为在构成引人入胜的广告中非常重要。线性SVM和Logistic回归分类器达到了最高的平均F评分(这两个模型为93.6%),确定最佳特征子集分别包含12和6个特征。最后,我们证实了IRA专门针对分裂广告主题的相关作品的发现(例如,LGBT权利,非裔美国人赔偿)。

This paper examines 3,517 Facebook ads created by Russia's Internet Research Agency (IRA) between June 2015 and August 2017 in its active measures disinformation campaign targeting the 2016 U.S. general election. We aimed to unearth the relationship between ad engagement (as measured by ad clicks) and 41 features related to ads' metadata, sociolinguistic structures, and sentiment. Our analysis was three-fold: (i) understand the relationship between engagement and features via correlation analysis; (ii) find the most relevant feature subsets to predict engagement via feature selection; and (iii) find the semantic topics that best characterize the dataset via topic modeling. We found that ad expenditure, text size, ad lifetime, and sentiment were the top features predicting users' engagement to the ads. Additionally, positive sentiment ads were more engaging than negative ads, and sociolinguistic features (e.g., use of religion-relevant words) were identified as highly important in the makeup of an engaging ad. Linear SVM and Logistic Regression classifiers achieved the highest mean F-scores (93.6% for both models), determining that the optimal feature subset contains 12 and 6 features, respectively. Finally, we corroborate the findings of related works that the IRA specifically targeted Americans on divisive ad topics (e.g., LGBT rights, African American reparations).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源