论文标题
Cherednik代数的逆Galois问题
The inverse Galois problem for Cherednik algebras
论文作者
论文摘要
考虑到理性的Cherednik代数的球形子代理$ b $,我们旨在对所有有限的组$γ$进行分类,其中存在一个$ r $上的$ r $,$γ$由环自动形态起作用,以便$ b = r^γ。
Given the spherical subalgebra $B$ of a rational Cherednik algebra, we aim to classify all finite groups $Γ$ for which there exists a domain $R$ on which $Γ$ acts by ring automorphisms, such that $B=R^Γ.$ We describe such groups in terms of geometry of the center of the reduction of $B$ modulo a large prime.