论文标题
估计天气对农业的影响
Estimating the Impact of Weather on Agriculture
论文作者
论文摘要
本文量化了小农农业生产力分析中遥感天气数据中测量误差效应的重要性和幅度。该分析利用了来自撒哈拉以南非洲六个国家 /地区的17轮国家代表性的家庭调查数据。这些数据通过一系列地理空间数据源和相关指标在空间上链接。我们提供了有关测量误差的系统证据1)用来混淆家庭的确切GPS坐标的不同方法,2)2)用于量化降水和温度的不同指标,以及3)不同的遥感测量技术。首先,我们发现不同混淆方法引入的测量误差的效果没有明显的影响。其次,我们发现简单的天气指标,例如总季节性降雨量和平均每日温度,胜过更复杂的指标,例如在广泛的环境中降雨偏差与长期平均水平或增长学位天数。最后,我们发现基于遥感产品的大量测量误差。在极端情况下,从不同的遥感产品中获取的数据会导致天气指标系数的相反迹象,这意味着从一种产品中绘制的降水量或温度据称会增加农作物的产量,而从不同产品绘制的相同指标据称可以减少作物的产量。我们以一组六个最佳实践为结尾,为希望将遥感天气数据与社会经济调查数据相结合的研究人员。
This paper quantifies the significance and magnitude of the effect of measurement error in remote sensing weather data in the analysis of smallholder agricultural productivity. The analysis leverages 17 rounds of nationally-representative, panel household survey data from six countries in Sub-Saharan Africa. These data are spatially-linked with a range of geospatial weather data sources and related metrics. We provide systematic evidence on measurement error introduced by 1) different methods used to obfuscate the exact GPS coordinates of households, 2) different metrics used to quantify precipitation and temperature, and 3) different remote sensing measurement technologies. First, we find no discernible effect of measurement error introduced by different obfuscation methods. Second, we find that simple weather metrics, such as total seasonal rainfall and mean daily temperature, outperform more complex metrics, such as deviations in rainfall from the long-run average or growing degree days, in a broad range of settings. Finally, we find substantial amounts of measurement error based on remote sensing product. In extreme cases, data drawn from different remote sensing products result in opposite signs for coefficients on weather metrics, meaning that precipitation or temperature draw from one product purportedly increases crop output while the same metrics drawn from a different product purportedly reduces crop output. We conclude with a set of six best practices for researchers looking to combine remote sensing weather data with socioeconomic survey data.