论文标题

Serv-CT:CT的差异数据集用于验证内窥镜3D重建

SERV-CT: A disparity dataset from CT for validation of endoscopic 3D reconstruction

论文作者

Edwards, P. J. "Eddie'', Psychogyios, Dimitris, Speidel, Stefanie, Maier-Hein, Lena, Stoyanov, Danail

论文摘要

在计算机视觉中,参考数据集在促进立体声重建中的算法开发方面非常成功。手术场景引起了特定的问题,包括缺乏清晰的角度特征,高度镜面以及血液和烟雾的存在。已使用CT和幻影图像或涵盖内窥镜视野相对较小区域的生物组织样品生产了公开可用的数据集。我们提出了基于CT(SERV-CT)的立体声内镜面重建验证数据集。两个{\ it ex vivo}小猪全躯干尸体被放置在内窥镜内窥镜和目标解剖结构中,在CT扫描中可见。内窥镜的方向与立体视图手动对齐。从每个样本中计算出8个立体声对的参考差异和遮挡。对于第二个样品,获得了RGB表面,以帮助对齐光滑,无特征的表面。重复的手动比对显示RMS的差异精度约为2像素,深度精度约为2mm。参考数据集包括内窥镜图像对,具有相应的校准,差异,深度和遮挡,涵盖了大多数内窥镜图像和一系列组织类型。包括光滑的镜面和具有显着深度变化的图像。我们评估了来自在线可用存储库中各种立体声算法的性能。算法之间存在显着差异,突出了手术内窥镜图像的一些挑战。 SERV-CT数据集提供了易于使用的立体验证,用于具有光滑的参考差异和深度的外科应用程序,并在大多数内窥镜图像上进行了覆盖。这很好地补充了现有资源,我们希望将有助于开发外科内镜解剖重建算法。

In computer vision, reference datasets have been highly successful in promoting algorithmic development in stereo reconstruction. Surgical scenes gives rise to specific problems, including the lack of clear corner features, highly specular surfaces and the presence of blood and smoke. Publicly available datasets have been produced using CT and either phantom images or biological tissue samples covering a relatively small region of the endoscope field-of-view. We present a stereo-endoscopic reconstruction validation dataset based on CT (SERV-CT). Two {\it ex vivo} small porcine full torso cadavers were placed within the view of the endoscope with both the endoscope and target anatomy visible in the CT scan. Orientation of the endoscope was manually aligned to the stereoscopic view. Reference disparities and occlusions were calculated for 8 stereo pairs from each sample. For the second sample an RGB surface was acquired to aid alignment of smooth, featureless surfaces. Repeated manual alignments showed an RMS disparity accuracy of ~2 pixels and a depth accuracy of ~2mm. The reference dataset includes endoscope image pairs with corresponding calibration, disparities, depths and occlusions covering the majority of the endoscopic image and a range of tissue types. Smooth specular surfaces and images with significant variation of depth are included. We assessed the performance of various stereo algorithms from online available repositories. There is a significant variation between algorithms, highlighting some of the challenges of surgical endoscopic images. The SERV-CT dataset provides an easy to use stereoscopic validation for surgical applications with smooth reference disparities and depths with coverage over the majority of the endoscopic images. This complements existing resources well and we hope will aid the development of surgical endoscopic anatomical reconstruction algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源