论文标题

野外算法追索:了解数据和模型变化的影响

Algorithmic Recourse in the Wild: Understanding the Impact of Data and Model Shifts

论文作者

Rawal, Kaivalya, Kamar, Ece, Lakkaraju, Himabindu

论文摘要

随着预测模型越来越多地被部署以做出各种结果决定,因此越来越强调设计算法可以为受影响的个体提供求助的算法。在假设基础预测模型不会改变的假设下,现有的追索算法功能。但是,由于多种原因,包括数据分配变化,定期更新模型。在这项工作中,我们首次尝试了解数据分布转移产生的模型更新如何影响最新算法生成的算法回复。我们进行了严格的理论和经验分析,以解决上述问题。我们的理论结果建立了由于模型转移而导致追索性无效的概率的下限,并表明了这种无效概率和典型的“成本”概念之间的权衡,而“成本”的典型概念被现代追索性生成算法最小化。我们尝试多个合成和现实世界数据集,捕获各种分布变化,包括时间偏移,地理空间移动以及由于数据校正而引起的变化。这些实验表明,由于所有上述分布变化而引起的模型更新可能可能导致最新算法产生的回流无效。因此,我们的发现不仅暴露了当前追索性生成范式中以前未知的缺陷,而且还为从根本上重新思考追索性生成算法的设计和开发铺平了道路。

As predictive models are increasingly being deployed to make a variety of consequential decisions, there is a growing emphasis on designing algorithms that can provide recourse to affected individuals. Existing recourse algorithms function under the assumption that the underlying predictive model does not change. However, models are regularly updated in practice for several reasons including data distribution shifts. In this work, we make the first attempt at understanding how model updates resulting from data distribution shifts impact the algorithmic recourses generated by state-of-the-art algorithms. We carry out a rigorous theoretical and empirical analysis to address the above question. Our theoretical results establish a lower bound on the probability of recourse invalidation due to model shifts, and show the existence of a tradeoff between this invalidation probability and typical notions of "cost" minimized by modern recourse generation algorithms. We experiment with multiple synthetic and real world datasets, capturing different kinds of distribution shifts including temporal shifts, geospatial shifts, and shifts due to data correction. These experiments demonstrate that model updation due to all the aforementioned distribution shifts can potentially invalidate recourses generated by state-of-the-art algorithms. Our findings thus not only expose previously unknown flaws in the current recourse generation paradigm, but also pave the way for fundamentally rethinking the design and development of recourse generation algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源