论文标题

液体薄膜变形模型的结构保存,能量稳定的数值方案

Structure-preserving, energy stable numerical schemes for a liquid thin film coarsening model

论文作者

Zhang, Juan, Wang, Cheng, Wise, Steven M., Zhang, Zhengru

论文摘要

在本文中,提出了两个有限的差异数值方案,并分析了液滴液膜模型,其中涉及奇异的伦纳德·琼斯的能量潜力。一阶和二阶准确的时间算法都被考虑。在一阶方案中,凸电势和表面扩散项是隐式的,而凹面电位项则明确更新。此外,我们提供了一个理论上的理由,即该数值算法具有独特的解决方案,因此始终将阳性保留在点级别的相变,以便在该方案中避免了奇异性。实际上,伦纳德·琼斯(Leonard-Jones)的潜在项的奇异性质围绕0的值,可以阻止数值解决方案达到如此奇异的值,从而始终保留阳性结构。此外,得出了数值方案的无条件能量稳定性,对于时间步长而没有任何限制。在二阶数值方案中,应用BDF颞模板,并得出了替代的凸 - 串联分解,因此凹部部分对应于二次能量。反过来,伦纳德·琼斯(Leonard-Jones)的组合势项被隐式处理,凹部部分通过二阶Adams-bashforth显式外推近似,并添加了人工Douglas-Dupont正则化项以确保能量稳定性。可以类似地确定二阶方案的独特解决性和阳性性能。此外,第一阶和二阶精确方案都提供了最佳速率收敛分析。还提供了一些数值模拟结果,这些结果证明了数值方案的鲁棒性。

In this paper, two finite difference numerical schemes are proposed and analyzed for the droplet liquid film model, with a singular Leonard-Jones energy potential involved. Both first and second order accurate temporal algorithms are considered. In the first order scheme, the convex potential and the surface diffusion terms are implicitly, while the concave potential term is updated explicitly. Furthermore, we provide a theoretical justification that this numerical algorithm has a unique solution, such that the positivity is always preserved for the phase variable at a point-wise level, so that a singularity is avoided in the scheme. In fact, the singular nature of the Leonard-Jones potential term around the value of 0 prevents the numerical solution reaching such singular value, so that the positivity structure is always preserved. Moreover, an unconditional energy stability of the numerical scheme is derived, without any restriction for the time step size. In the second order numerical scheme, the BDF temporal stencil is applied, and an alternate convex-concave decomposition is derived, so that the concave part corresponds to a quadratic energy. In turn, the combined Leonard-Jones potential term is treated implicitly, and the concave part the is approximated by a second order Adams-Bashforth explicit extrapolation, and an artificial Douglas-Dupont regularization term is added to ensure the energy stability. The unique solvability and the positivity-preserving property for the second order scheme could be similarly established. In addition, optimal rate convergence analysis is provided for both the first and second order accurate schemes. A few numerical simulation results are also presented, which demonstrate the robustness of the numerical schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源