论文标题
分子CT:在不同尺度的分子的统一几何形状和表示
Molecular CT: Unifying Geometry and Representation Learning for Molecules at Different Scales
论文作者
论文摘要
深度学习正在改变分子物理学的许多领域,并且显示出为挑战分子建模问题提供新的解决方案的巨大潜力。随着这一趋势,与分子系统兼容的表达和多功能神经网络体系结构的需求不断增长。为此,引入了一种新的深神经网络结构,即分子构型变压器(分子CT)。分子CT由关系感知的编码器模块和一个计算上的通用几何学习单元组成,因此能够说明粒子之间的关系约束,同时可扩展到不同的粒子数,并且相对于反旋转变换而不变。计算效率和普遍性使得分子CT用于各种分子学习方案,尤其吸引了跨不同分子系统的可转移表示学习。作为示例,我们表明,分子CT可以在不同尺度上对分子系统的代表性学习,并且与基线模型相比,使用更轻巧的结构在常见基准上获得了可比较或改进的结果。
Deep learning is changing many areas in molecular physics, and it has shown great potential to deliver new solutions to challenging molecular modeling problems. Along with this trend arises the increasing demand of expressive and versatile neural network architectures which are compatible with molecular systems. A new deep neural network architecture, Molecular Configuration Transformer (Molecular CT), is introduced for this purpose. Molecular CT is composed of a relation-aware encoder module and a computationally universal geometry learning unit, thus able to account for the relational constraints between particles meanwhile scalable to different particle numbers and invariant with respect to the trans-rotational transforms. The computational efficiency and universality make Molecular CT versatile for a variety of molecular learning scenarios and especially appealing for transferable representation learning across different molecular systems. As examples, we show that Molecular CT enables representational learning for molecular systems at different scales, and achieves comparable or improved results on common benchmarks using a more light-weighted structure compared to baseline models.