论文标题
使用Kalman滤波器快速,强大的手术阵列定位
Fast and Robust Localization of Surgical Array using Kalman Filter
论文作者
论文摘要
手术器械的术中跟踪是计算机辅助手术的必然任务。由于采集噪声和测量方差,光学跟踪系统通常无法精确地重建手术工具的动态位置和姿势。嵌入Kalman滤波器(KF)及其任何扩展(例如,使用光学跟踪器的扩展和无味的Kalman过滤器)通过减少估计方差并正式化时间行为来解决此问题。但是,当前的刚体KF实现是计算繁重的,因此需要很长的执行时间,从而阻碍了实时手术跟踪。本文引入了线性KF的快速和计算有效实现,以提高具有高时间分辨率的光学跟踪系统的测量精度。我们的KF框架不是整体手术工具,而是使用牛顿模型跟踪安装在其上的每个基金会。除了模拟数据集外,我们还针对从高框架速率商业光学跟踪系统获得的实际数据验证了我们的技术。所提出的KF框架基本上稳定了我们所有实验中的跟踪行为,并将均方误差(MSE)从$ 10^{ - 2} $ $ mm^{2} $减少到$ 10^{ - 4} $ $ MM^{2} $。
Intraoperative tracking of surgical instruments is an inevitable task of computer-assisted surgery. An optical tracking system often fails to precisely reconstruct the dynamic location and pose of a surgical tool due to the acquisition noise and measurement variance. Embedding a Kalman Filter (KF) or any of its extensions such as extended and unscented Kalman filters with the optical tracker resolves this issue by reducing the estimation variance and regularizing the temporal behavior. However, the current rigid-body KF implementations are computationally burdensome and hence, takes long execution time which hinders real-time surgical tracking. This paper introduces a fast and computationally efficient implementation of linear KF to improve the measurement accuracy of an optical tracking system with high temporal resolution. Instead of the surgical tool as a whole, our KF framework tracks each individual fiducial mounted on it using a Newtonian model. In addition to simulated dataset, we validate our technique against real data obtained from a high frame-rate commercial optical tracking system. The proposed KF framework substantially stabilizes the tracking behavior in all of our experiments and reduces the mean-squared error (MSE) from the order of $10^{-2}$ $mm^{2}$ to $10^{-4}$ $mm^{2}$.