论文标题
反射对称性破裂的隧道动力学标志
Hallmarks of tunneling dynamics with broken reflective symmetry
论文作者
论文摘要
我们研究了具有多孔电势且反射对称性损坏的n = 4超对称量子力学的可溶解模型中隧道动力学的特征。具有这种类型的现象学潜力的量子系统证明了降低持续状态的部分定位的现象,可能导致所谓的“共振”隧道的出现,或者是连贯的隧道破坏现象,指的是完全定位。以部分定位和连贯的隧道破坏为基本示例,我们表明在具有两孔和三孔电势的量子机械系统中使用准确可溶解的汉密尔顿人的主要优势。他们尤其是:具有足够的自由,可以在广泛的范围内改变潜在形状,这使人们可以选择一个接近现象学特征的恰当可溶解的模型;改变电势(对称或变形)的局部最小值和对称特征的能力,而无需更改光谱的主要部分;参与智能状态的基础,大大降低了相应光谱问题对角度化过程中使用的矩阵的维度。
We study features of tunneling dynamics in an exactly-solvable model of N=4 supersymmetric quantum mechanics with a multi-well potential and with broken reflective symmetry. Quantum systems with a phenomenological potential of this type demonstrate the phenomenon of partial localization of under-barrier states, possibly resulting in the appearance of the so-called "resonant" tunneling, or the phenomenon of coherent tunneling destruction, referring to the complete localization. Taking the partial localization and the coherent tunneling destruction as basic examples, we indicate main advantages of using isospectral exactly-solvable Hamiltonians in studies quantum mechanical systems with two- and three-well potentials. They, in particular, are: having enough freedom of changing the potential shape in a wide range, that allows one to choose an exactly-solvable model close to characteristics of the phenomenological one; ability of changing the number of local minima and symmetry characteristics of the potential (symmetric or deformed) without changing the main part of the spectrum; engaging a smart basis of states, that dramatically decreases the dimensionality of matrices used in the diagonalization procedure of the corresponding spectral problem.