论文标题

在I型奇点条件下,就$ \ Mathbb r^3 $的Euler方程的压力而言

On a Type I singularity condition in terms of the pressure for the Euler equations in $\mathbb R^3$

论文作者

Chae, Dongho, Constantin, Peter

论文摘要

我们证明了平滑溶液的压力$ u \ in c([0,t)的爆炸标准; w^{2,q}(\ Mathbb r^3))$,$ q> 3 $不可压缩的Euler方程。我们表明,$ t = t $炸毁仅发生时才发生,仅当$$ \ int_0 ^t \ int_0 ^t \ left \ weft \ {\ int_0 ^s \ | d ^2 p(τ)\ | | _ {l ^\ in {l ^\ infty}dτ\ exp_ (τ)\ | _ {l^\ infty}dτd\ s \ right)\ right \} dsdt \,= +\ infty。 {c} {(t-t)^2} $,$ c <1 $ as $ t \ nearrow t $。在$ \ int_0 ^t \ | u(t)\ | _ {l ^\ infty(b(x_0,ρ))} dt <+\ infty $的其他假设下,我们获得了这些结果的本地化版本。

We prove a blow up criterion in terms of the Hessian of the pressure of smooth solutions $u\in C([0, T); W^{2,q} (\mathbb R^3))$, $q>3$ of the incompressible Euler equations. We show that a blow up at $t=T$ happens only if $$\int_0 ^T \int_0 ^t \left\{\int_0 ^s \|D^2 p (τ)\|_{L^\infty} dτ\exp \left( \int_{s} ^t \int_0 ^{\s} \|D^2 p (τ)\|_{L^\infty} dτd\s \right) \right\}dsdt \, = +\infty.$$ As consequences of this criterion we show that there is no blow up at $t=T$ if $ \|D^2 p(t)\|_{L^\infty} \le \frac {c}{(T-t)^2}$ with $c<1$ as $t\nearrow T$. Under the additional assumption of $\int_0 ^T \|u(t)\|_{L^\infty (B(x_0, ρ))} dt <+\infty$, we obtain localized versions of these results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源