论文标题
评估遭受几何灾难的增长模型中的色散策略
Evaluating dispersion strategies in growth models subject to geometric catastrophes
论文作者
论文摘要
我们认为随机生长模型代表遭受几何灾难的种群动态。我们分析了灾难性后不同的分散方案,以研究这些方案如何影响人口生存能力,并将其与没有分散的计划进行比较。在分散方案中,我们认为,在灾难事件发生后,每个殖民地都有$ d $ $的新职位来放置其幸存者。我们发现,当$ d = 2 $时,考虑到无类型的分散会提高生存的机会,充其量是与没有分散的计划相匹配的。当$ d = 3 $(根据生存概率)时,我们得出结论,分散可能是一个优势,取决于其类型,菌落生长的速度以及个人在暴露于灾难时生存的概率。
We consider stochastic growth models to represent population dynamics subject to geometric catastrophes. We analyze different dispersion schemes after catastrophes, to study how these schemes impact the population viability and comparing them with the scheme where there is no dispersion. In the schemes with dispersion, we consider that each colony, after the catastrophe event, has $d$ new positions to place its survivors. We find out that when $d = 2$ no type of dispersion considered improves the chance of survival, at best it matches the scheme where there is no dispersion. When $d = 3$, based on the survival probability, we conclude that dispersion may be an advantage or not, depending on its type, the rate of colony growth and the probability that an individual will survive when exposed to a catastrophe.