论文标题
通过圆形卷积网络进行3D点云分析的基于强大的内核特征表示
Robust Kernel-based Feature Representation for 3D Point Cloud Analysis via Circular Convolutional Network
论文作者
论文摘要
点云的特征描述符用于多种应用中,例如注册和3D点云的部分分割。毫无疑问,学习局部几何特征的判别性表示是准确的点云分析的最重要任务。但是,开发旋转或规模不变的描述符是具有挑战性的。以前的大多数研究都忽略了旋转或经验研究的最佳比例参数,这阻碍了该方法对现实世界数据集的适用性。在本文中,我们提出了一种新的本地功能描述方法,该方法对旋转,密度和比例变化具有鲁棒性。此外,为了改善本地描述符的表示,我们提出了一种全局聚合方法。首先,我们将内核沿正常方向对齐。为了避免正常矢量的符号问题,我们在切向平面中使用对称内核点分布。从每个内核点,我们首先将点从空间空间到特征空间投射,该点基于角度和距离,该点稳健到多个尺度和旋转。随后,我们通过考虑通过全局聚合方法获得的局部内核点结构和远程全局上下文来执行图形卷积。我们在基准数据集(即ModelNet40和ShapenetPart)上尝试了我们提出的描述符,以评估3D点云上的注册,分类和零件分割的性能。与最先进的方法相比,我们的方法表现出了出色的性能,通过减少注册任务中的旋转和翻译错误的70美元$ \%$。我们的方法还显示了具有简单和低维体系结构的分类和零件分割任务的可比性。
Feature descriptors of point clouds are used in several applications, such as registration and part segmentation of 3D point clouds. Learning discriminative representations of local geometric features is unquestionably the most important task for accurate point cloud analyses. However, it is challenging to develop rotation or scale-invariant descriptors. Most previous studies have either ignored rotations or empirically studied optimal scale parameters, which hinders the applicability of the methods for real-world datasets. In this paper, we present a new local feature description method that is robust to rotation, density, and scale variations. Moreover, to improve representations of the local descriptors, we propose a global aggregation method. First, we place kernels aligned around each point in the normal direction. To avoid the sign problem of the normal vector, we use a symmetric kernel point distribution in the tangential plane. From each kernel point, we first projected the points from the spatial space to the feature space, which is robust to multiple scales and rotation, based on angles and distances. Subsequently, we perform graph convolutions by considering local kernel point structures and long-range global context, obtained by a global aggregation method. We experimented with our proposed descriptors on benchmark datasets (i.e., ModelNet40 and ShapeNetPart) to evaluate the performance of registration, classification, and part segmentation on 3D point clouds. Our method showed superior performances when compared to the state-of-the-art methods by reducing 70$\%$ of the rotation and translation errors in the registration task. Our method also showed comparable performance in the classification and part-segmentation tasks with simple and low-dimensional architectures.