论文标题
与立方相互作用的旋律场理论的评论
Remarks on a melonic field theory with cubic interaction
论文作者
论文摘要
我们根据有关Sachdev-Ye-Kitaev(Syk)(SYK)和张量模型的最新研究来重新访问Amit-Roginsky(AR)模型,它们具有一些重要的特征。它是$ n $标量字段的模型,该字段以$ n $ dimension的不可约(3)$变化。最相关的(在重新归一化的群体中)不变的互动是在田地中的立方体,并由Wigner $ 3JM $符号介导。后者可以看作是特定的等级3张量耦合,因此突出了与SYK模型的相似性,在该模型中,张量耦合是随机且均匀的。与Syk和Tensor模型一样,在很大程度上限制了扰动扩展由Melonic图所主导的。缺乏随机性以及可以使用$ N $字段构建的迅速增长的不变性,使AR模型更接近张量模型。我们回顾了阿米特(Amit)和罗根斯基(Roginsky)的旧工作的结果,并在最近的发展方面看来,纠正和完成了他们的一些陈述,特别是关于操作员产品扩展两个基本领域的频谱。 $ 5.74 <d <6 $,定点理论定义了一个真正的CFT,而对于较小的$ d $ complex尺寸,在将最低尺寸与阴影合并后,出现了。我们还介绍并研究了该模型的远程版本,对于该模型,对于任何$ n $,对于任何$ d <6 $,对于实际和虚构的耦合而言,我们都会发现一个真实而统一的CFT,直到有些关键的耦合。
We revisit the Amit-Roginsky (AR) model in the light of recent studies on Sachdev-Ye-Kitaev (SYK) and tensor models, with which it shares some important features. It is a model of $N$ scalar fields transforming in an $N$-dimensional irreducible representation of $SO(3)$. The most relevant (in renormalization group sense) invariant interaction is cubic in the fields and mediated by a Wigner $3jm$ symbol. The latter can be viewed as a particular rank-3 tensor coupling, thus highlighting the similarity to the SYK model, in which the tensor coupling is however random and of even rank. As in the SYK and tensor models, in the large-$N$ limit the perturbative expansion is dominated by melonic diagrams. The lack of randomness, and the rapidly growing number of invariants that can be built with $n$ fields, makes the AR model somewhat closer to tensor models. We review the results from the old work of Amit and Roginsky with the hindsight of recent developments, correcting and completing some of their statements, in particular concerning the spectrum of the operator product expansion of two fundamental fields. For $5.74<d<6$ the fixed-point theory defines a real CFT, while for smaller $d$ complex dimensions appear, after a merging of the lowest dimension with its shadow. We also introduce and study a long-range version of the model, for which the cubic interaction is exactly marginal at large $N$, and we find a real and unitary CFT for any $d<6$, both for real and imaginary coupling constant, up to some critical coupling.