论文标题

使用有效的机载传输模型预测室内空间中空间的感染风险

Predicting the Spatially Varying Infection Risk in Indoor Spaces Using an Efficient Airborne Transmission Model

论文作者

Lau, Zechariah, Griffiths, Ian M., English, Aaron, Kaouri, Katerina

论文摘要

我们开发了对Wells-Riley模型的空间依赖性概括及其应用于Covid-19的扩展,这决定了由于病毒的空气传播而引起的感染风险。我们假设传染性颗粒的浓度受气流前流 - 扩散反应方程的控制,由于湍流,由于湍流而扩散,被感染的人散发出来,并因房间通风,病毒和重力沉降而被去除。我们认为一个无症状或预症状的传染性人会呼吸或谈话,有或没有掩模,并模拟了一个符合循环空调流的准3D设置。可以使用半分析解决方案,这可以快速模拟。我们量化了通风和颗粒排放速率对颗粒浓度,感染风险和“可能感染时间”的影响(TTPI)。与CFD模型达成了良好的一致性。此外,我们得出了量化病毒通气,排放率和传染性影响TTPI的作用的功率定律。该模型可以轻松更新以考虑修改后的参数值。这项工作为在任何位置建立“安全占用时间”的方式铺平了道路,并且在减轻19009年大流行的传播方面有直接适用性。

We develop a spatially dependent generalisation to the Wells-Riley model and its extensions applied to COVID-19, that determines the infection risk due to airborne transmission of viruses. We assume that the concentration of infectious particles is governed by an advection-diffusion-reaction equation with the particles advected by airflow, diffused due to turbulence, emitted by infected people and removed due to the room ventilation, inactivation of the virus and gravitational settling. We consider one asymptomatic or presymptomatic infectious person who breathes or talks, with or without a mask and model a quasi-3D setup that incorporates a recirculating air-conditioning flow. A semi-analytic solution is available and this enables fast simulations. We quantify the effect of ventilation and particle emission rate on the particle concentration, infection risk and the `time to probable infection' (TTPI). Good agreement with CFD models is achieved. Furthermore, we derive power laws that quantify the effect of ventilation, emission rate and infectiousness of the virus on the TTPI. The model can be easily updated to take into account modified parameter values. This work paves the way for establishing `safe occupancy times' at any location and has direct applicability in mitigating the spread of the COVID-19 pandemic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源