论文标题
几何化非相关双线性变形
Geometrizing non-relativistic bilinear deformations
论文作者
论文摘要
我们为任何大规模的非相关2D量子场理论(QFT)定义了三个基本可溶性双线性变形。它们包括$ \ mathrm {t} \ overline {\ mathrm {t}} $变形和最近引入的硬杆变形。我们表明,所有三个变形都可以解释为将非相对论QFT耦合到特定的牛顿 - 卡丹几何几何形状,类似于相对论的情况下类似jackiw-teitelboim的重力。使用重力公式,我们得出了具有一般潜力的Schrödinger模型的封闭形式变形的经典拉格朗日。我们还将坐标解释的动态变化扩展到所有三个变形的非相关案例。然后,动态坐标用于得出变形的经典拉格朗日和变形的量子S-膜。
We define three fundamental solvable bilinear deformations for any massive non-relativistic 2d quantum field theory (QFT). They include the $\mathrm{T}\overline{\mathrm{T}}$ deformation and the recently introduced hard rod deformation. We show that all three deformations can be interpreted as coupling the non-relativistic QFT to a specific Newton-Cartan geometry, similar to the Jackiw-Teitelboim-like gravity in the relativistic case. Using the gravity formulations, we derive closed-form deformed classical Lagrangians of the Schrödinger model with a generic potential. We also extend the dynamical change of coordinate interpretation to the non-relativistic case for all three deformations. The dynamical coordinates are then used to derive the deformed classical Lagrangians and deformed quantum S-matrices.