论文标题
关于持有人的连续性和等效的harnack估计值
On Holder Continuity and Equivalent Formulation of Intrinsic Harnack Estimates for an Anisotropic Parabolic Degenerate Prototype Equation
论文作者
论文摘要
我们为方程式的局部弱解决方案提供了Hölder连续性的证明 美元2 <p_i <\ bar {p}(p}(1+2/n)的$ i = 1,..,n $,为$ \ bar {p} $ $ p_i $ s的谐波平均值,通过最近发现的intinsic harnack估计。此外,我们在适当的固有几何形状中建立了这些harnack估计的等效形式。
We give a proof of Hölder continuity for bounded local weak solutions to the equation $u_t= \sum_{i=1}^N (|u_{x_i}|^{p_i-2} u_{x_i})_{x_i}$, in $Ω\times [0,T]$, with $Ω\subset \subset \mathbb{R}^N$, under the condition $ 2<p_i<\bar{p}(1+2/N)$ for each $i=1,..,N$, being $\bar{p}$ the harmonic mean of the $p_i$s, via recently discovered intrinsic Harnack estimates. Moreover we establish equivalent forms of these Harnack estimates within the proper intrinsic geometry.