论文标题

关于某些$γ$ - 差异模块的结构

On the structure of certain $Γ$-difference modules

论文作者

de Shalit, Ehud, Gutiérrez, José

论文摘要

这是一份很大程度上的说明文件,在[SCH-SI1,SCH-SI2]的结果中提供了一个独立的帐户,在该案例中表示为2q和2m。 Schäfke和Singer的这些论文为[Bez-Bou,ad-Be]的主要定理提供了新的证据,内容符合功率系列的合理性,使一对独立的Q-Difference或Mahler方程式满足。 我们强调$γ$ - 差异模块的语言,而不是差方程或系统。尽管在上面提到的两种情况下,这只是一种语义变化,但我们也将新案例视为1M1Q。在这里,组$γ$是概括性的二面而不是Abelian,方程式语言不足。 在最后一部分中,我们解释了如何在情况2Q中概括主要定理以获取有限特征。

This is a largely expository paper, providing a self-contained account on the results of [Sch-Si1, Sch-Si2], in the cases denoted there 2Q and 2M. These papers of Schäfke and Singer supplied new proofs to the main theorems of [Bez-Bou, Ad-Be], on the rationality of power series satisfying a pair of independent q-difference, or Mahler, equations. We emphasize the language of $Γ$-difference modules, instead of difference equations or systems. Although in the two cases mentioned above this is only a semantic change, we also treat a new case, which may be labeled 1M1Q. Here the group $Γ$ is generalized dihedral rather than abelian, and the language of equations is inadequate. In the last section we explain how to generalize the main theorems in case 2Q to finite characteristic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源