论文标题
RAP-NET:单个随机解剖学先验
RAP-Net: Coarse-to-Fine Multi-Organ Segmentation with Single Random Anatomical Prior
论文作者
论文摘要
进行粗到1的腹部多器官分割有助于提取高分辨率分割,以最大程度地减少空间上下文信息的丢失。然而,当前的粗到反复方法需要大量模型来执行与提取器官感兴趣的器官区域(ROI)相对应的单器官细分分割。我们提出了一条粗到精细的管道,该管道始于使用低分辨率粗网络从3D体积中的全局先验上下文提取,然后使用单个精制模型将所有腹部器官而不是多器官相应的模型分割。我们将解剖学先验与相应的提取斑块结合在一起,以保留单个模型中所有器官进行高分辨率分割的解剖位置和边界信息。为了训练和评估我们的方法,使用了由100个具有13个器官供应良好的器官的患者体积组成的临床研究队列。我们用4倍交叉验证测试了算法,并计算了评估13个器官的分割性能的骰子得分。我们建议使用单个自动文本的方法优于13个型号的最先进的方法,平均骰子得分为84.58%,而81.69%(p <0.0001)。
Performing coarse-to-fine abdominal multi-organ segmentation facilitates to extract high-resolution segmentation minimizing the lost of spatial contextual information. However, current coarse-to-refine approaches require a significant number of models to perform single organ refine segmentation corresponding to the extracted organ region of interest (ROI). We propose a coarse-to-fine pipeline, which starts from the extraction of the global prior context of multiple organs from 3D volumes using a low-resolution coarse network, followed by a fine phase that uses a single refined model to segment all abdominal organs instead of multiple organ corresponding models. We combine the anatomical prior with corresponding extracted patches to preserve the anatomical locations and boundary information for performing high-resolution segmentation across all organs in a single model. To train and evaluate our method, a clinical research cohort consisting of 100 patient volumes with 13 organs well-annotated is used. We tested our algorithms with 4-fold cross-validation and computed the Dice score for evaluating the segmentation performance of the 13 organs. Our proposed method using single auto-context outperforms the state-of-the-art on 13 models with an average Dice score 84.58% versus 81.69% (p<0.0001).