论文标题

两端钙钛矿/硅串联太阳能电池的详细平衡效率限制与平面和兰伯特光谱拆分器

Detailed-balance efficiency limits of two-terminal perovskite/silicon tandem solar cells with planar and Lambertian spectral splitters

论文作者

Neder, Verena, Tabernig, Stefan W., Polman, Albert

论文摘要

我们在具有嵌入式光谱分离器的两端串联太阳能电池的光伏转换效率极限和硅底细胞中的光伏转换效率极限。对于大型带盖的顶部细胞,由于光吸收和捕获增强,频谱分离器会强烈提高效率。与平面分离器相比,兰伯特光谱分离器显示出明显改善的效果:我们发现,在1.75 eV上方的带盖的500 nm厚的顶部厚度为6%的500 nm厚的顶部细胞中,热力学极限的理想效率提高了。反之亦然,光谱分离器几何形状的使用实现了较薄的顶部细胞。使用实验参数用于钙钛矿细胞,我们表明,对于1.77 eV的顶部带隙,可以获得2.8%的绝对效率。这项工作中的计算表明,将光谱分离器的整合到钙钛矿/硅串联细胞中,顶部带隙高于1.7 eV,即使具有现实的实验损失和光谱启动器的非合同反射,效率也可能会大大提高。

We derive the photovoltaic conversion efficiency limit for two-terminal tandem solar cells with a perovskite top cell and silicon bottom cell with an embedded spectrum splitter. For large-bandgap top-cells a spectrum splitter strongly enhances the efficiency because of enhanced light absorption and trapping. A Lambertian spectral splitter shows a significantly improved effect compared to a planar splitter: we find an ideal efficiency enhancement in the thermodynamic limit for a 500 nm thick top cell of 6% absolute for bandgaps above 1.75 eV. Vice versa, the use of a spectral splitter geometry enables the use of a thinner top cell. Using experimental parameters for perovskite cells we show that for a top-cell bandgap of 1.77 eV a 2.8% absolute efficiency can be gained. The calculations in this work show that integration of a spectral splitter into perovskite/silicon tandem cells with a top bandgap above 1.7 eV can lead to a large increase in efficiency, even with realistic experimental losses and non-unity reflection of the spectral splitter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源