论文标题

最小化在线动态雾系统中的延迟和能量

Minimising Delay and Energy in Online Dynamic Fog Systems

论文作者

Alenizi, Faten, Rana, Omer

论文摘要

物联网(IoT)设备的越来越多的使用会产生对数据传输的更大需求,并给网络带来了增加的压力。此外,与云服务的连通性可能是昂贵且效率低下的。 FOG计算提供了与用户设备接近的资源,以克服这些缺点。但是,在物联网应用程序中的服务质量(QoS)和雾资资源管理的优化正变得具有挑战性。本文介绍了需要执行延迟敏感任务的车辆交通应用中的动态在线卸载方案。本文提出了两种算法的组合:动态任务调度(DTS)和动态能量控制(DEC),旨在最大程度地减少整体延迟,增强用户任务的吞吐量并最大程度地减少雾层的能量消耗,同时最大限度地利用资源约束的雾气节点的使用。与其他方案相比,我们的实验结果表明,这些算法可以将延迟减少高达80.79%,并在FOG节点中最多将能源消耗降低66.39%。此外,此方法将任务执行吞吐量提高了40.88%。

The increasing use of Internet of Things (IoT) devices generates a greater demand for data transfers and puts increased pressure on networks. Additionally, connectivity to cloud services can be costly and inefficient. Fog computing provides resources in proximity to user devices to overcome these drawbacks. However, optimisation of quality of service (QoS) in IoT applications and the management of fog resources are becoming challenging problems. This paper describes a dynamic online offloading scheme in vehicular traffic applications that require execution of delay-sensitive tasks. This paper proposes a combination of two algorithms: dynamic task scheduling (DTS) and dynamic energy control (DEC) that aim to minimise overall delay, enhance throughput of user tasks and minimise energy consumption at the fog layer while maximising the use of resource-constrained fog nodes. Compared to other schemes, our experimental results show that these algorithms can reduce the delay by up to 80.79% and reduce energy consumption by up to 66.39% in fog nodes. Additionally, this approach enhances task execution throughput by 40.88%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源