论文标题
操作员学习用于预测多尺度泡沫增长动态
Operator learning for predicting multiscale bubble growth dynamics
论文作者
论文摘要
模拟和预测多尺度问题,这些问题将多种物理和动力学在许多时空尺度上伴随着多种物理和动态,这是一个巨大的挑战,尚未通过深层神经网络(DNNS)系统地研究。在此,我们开发了一个基于操作员回归的框架,即所谓的深层操作员网络(DeepOnet),其长期目标是通过避免避免使用脆弱且耗时的“震动”界面算法来简化多尺度建模,以将多盘现象的异质描述拼接在一起。为此,作为第一步,我们研究了deponet是否可以学习不同尺度机制的动力学,一个在确定性的宏观上,另一个在随机微观范围内具有固有的热波动。具体而言,我们测试了deponet在预测多发性气泡生长动力学方面的有效性和准确性,该动力学由宏观上的瑞利植物(R-P)方程描述,并通过耗散粒子动力学(DPD)模拟了显微镜下的随机成核和空化过程。综上所述,我们的发现表明,可以采用Deponets来统一多重气泡生长问题的宏观和显微镜模型,从而通过DNN在解决现实的多阶段问题中,通过DNN提供了新的见解,并通过异构描述简化了模型。
Simulating and predicting multiscale problems that couple multiple physics and dynamics across many orders of spatiotemporal scales is a great challenge that has not been investigated systematically by deep neural networks (DNNs). Herein, we develop a framework based on operator regression, the so-called deep operator network (DeepONet), with the long term objective to simplify multiscale modeling by avoiding the fragile and time-consuming "hand-shaking" interface algorithms for stitching together heterogeneous descriptions of multiscale phenomena. To this end, as a first step, we investigate if a DeepONet can learn the dynamics of different scale regimes, one at the deterministic macroscale and the other at the stochastic microscale regime with inherent thermal fluctuations. Specifically, we test the effectiveness and accuracy of DeepONet in predicting multirate bubble growth dynamics, which is described by a Rayleigh-Plesset (R-P) equation at the macroscale and modeled as a stochastic nucleation and cavitation process at the microscale by dissipative particle dynamics (DPD). Taken together, our findings demonstrate that DeepONets can be employed to unify the macroscale and microscale models of the multirate bubble growth problem, hence providing new insight into the role of operator regression via DNNs in tackling realistic multiscale problems and in simplifying modeling with heterogeneous descriptions.