论文标题
一种用于一维扩散的非最小准平台分布的统一方法
A unifying approach to non-minimal quasi-stationary distributions for one-dimensional diffusions
论文作者
论文摘要
研究了针对一维扩散的非最低准定态分布的收敛。我们提供了一种通过属性来降低生命周期尾巴行为的方法,我们称之为第一个命中唯一性。我们将结果应用于负漂移负面的Kummer扩散,并给出一类初始分布,将其收敛到每个非最小化准平台分布。
Convergence to non-minimal quasi-stationary distributions for one-dimensional diffusions is studied. We give a method of reducing the convergence to the tail behavior of the lifetime via a property which we call the first hitting uniqueness. We apply the results to Kummer diffusions with negative drifts and give a class of initial distributions converging to each non-minimal quasi-stationary distribution.