论文标题

高光谱不混合的插入式PRIORS框架

A Plug-and-Play Priors Framework for Hyperspectral Unmixing

论文作者

zhao, Min, Wang, Xiuheng, Chen, Jie, Chen, Wei

论文摘要

光谱Umixing是高光谱图像处理和分析中广泛使用的技术。它旨在将混合像素分离为组件材料及其相应的丰度。在每个像素上独立执行光谱解体的早期解决方案。如今,调查适当的先验对未混合问题的问题已经很受欢迎,因为它可以显着提高不混合性能。但是,手工制作功能强大的正规化程序是不平凡的,并且复杂的正规化器可能会在解决涉及的优化问题方面带来额外的困难。为了解决这个问题,我们提出了一个高光谱脉冲的插件(PNP)PRIORS框架。更具体地说,我们使用乘数的交替方向方法(ADMM)将优化问题分解为两个迭代子问题。一个是一个常规的优化问题,具体取决于正向模型,另一个是与先前模型相关的接近性运算符,可以被视为图像denoising问题。我们的框架是灵活的,可扩展的,它允许各种denoisers替换先前的型号,并避免手工制作正规化器。对合成数据和实际空气传播数据进行的实验表明,与其他最先进的高光谱混合方法相比,提出的策略的优越性。

Spectral unmixing is a widely used technique in hyperspectral image processing and analysis. It aims to separate mixed pixels into the component materials and their corresponding abundances. Early solutions to spectral unmixing are performed independently on each pixel. Nowadays, investigating proper priors into the unmixing problem has been popular as it can significantly enhance the unmixing performance. However, it is non-trivial to handcraft a powerful regularizer, and complex regularizers may introduce extra difficulties in solving optimization problems in which they are involved. To address this issue, we present a plug-and-play (PnP) priors framework for hyperspectral unmixing. More specifically, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into two iterative subproblems. One is a regular optimization problem depending on the forward model, and the other is a proximity operator related to the prior model and can be regarded as an image denoising problem. Our framework is flexible and extendable which allows a wide range of denoisers to replace prior models and avoids handcrafting regularizers. Experiments conducted on both synthetic data and real airborne data illustrate the superiority of the proposed strategy compared with other state-of-the-art hyperspectral unmixing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源