论文标题
具有淬火柱状疾病的Kardar-Parisi-Zhang方程的通用性能
Universal properties of the Kardar-Parisi-Zhang equation with quenched columnar disorders
论文作者
论文摘要
受到最新结果的启发。 Haldar,A。Basu,Phys Rev Research 2,043073(2020)],我们研究了Kardar-Parisi-Zhang(KPZ)方程的通用缩放特性,并在通常的d量度中具有短期猝灭的柱状疾病。我们表明,系统中有通用的传播模式,它们起源于猝灭障碍并使系统各向异性。我们认为,传播模式的存在实际上使淬灭障碍的影响无关紧要,从而使通用的长波长缩放特性属于众所周知的KPZ通用类别。另一方面,当这些波在模型的特殊极限中消失时,新的普遍性类别以d = 4为较低的临界维度出现,高于该系统,高于该系统,该系统被推测,该系统被推测,该系统被允许诱发的粗糙过渡到触及触及障碍的粗糙阶段。
Inspired by the recent results on totally asymmetric simple exclusion processes on a periodic lattice with short-ranged quenched hopping rates [A. Haldar, A. Basu, Phys Rev Research 2, 043073 (2020)], we study the universal scaling properties of the Kardar-Parisi-Zhang (KPZ) equation with short-ranged quenched columnar disorder in general d-dimensions. We show that there are generic propagating modes in the system that have their origin in the quenched disorder and make the system anisotropic. We argue that the presence of the propagating modes actually make the effects of the quenched disorder irrelevant, making the universal long wavelength scaling property belong to the well-known KPZ universality class. On the other hand, when these waves vanish in a special limit of the model, new universality class emerges with dimension d = 4 as the lower critical dimension, above which the system is speculated to admit a disorder-induced roughening transition to a perturbatively inaccessible rough phase.