论文标题
受约束的系统,广义汉密尔顿 - 雅各比的动作和量化
Constrained systems, generalized Hamilton-Jacobi actions, and quantization
论文作者
论文摘要
具有约束的机械系统(即一维场理论)是本文的重点。在经典理论中,也考虑了具有无限靶靶标的系统(然后,这也包括在哈密顿形式主义中的高维领域理论)。详细描述了汉密尔顿 - 雅各比(HJ)作用的特性,并明确计算了几个示例(包括诺比尔·切恩·西蒙斯理论,其中HJ的作用证明是测量的wess-zumino-inter-inter-witten动作)。在本说明中有限的摄影量化限制为有限维靶标,是在散装和Batalin-Fradkin-vilkovisky(BFV)形式上的Batalin-Vilkovisky(BV)形式上进行的。作为对该方法的理智检查,HJ动作仍然给出了进化操作员物理部分的半经典贡献。明确计算了几个示例。特别是,可以表明,非亚伯·塞蒙斯理论的玩具模型和具有非线性希钦极化的7D Chern-Simons理论的玩具模型在物理部分中没有量子校正(在同伴论文中讨论了这些结果的量子校正(ARXIV:2012.13983])。提供了经典部分的背景材料(符合性几何形状,广义生成函数,HJ动作以及这些概念的扩展到无限维歧管)和量子部分(BV-BFV形式主义)。
Mechanical systems (i.e., one-dimensional field theories) with constraints are the focus of this paper. In the classical theory, systems with infinite-dimensional targets are considered as well (this then encompasses also higher-dimensional field theories in the hamiltonian formalism). The properties of the Hamilton-Jacobi (HJ) action are described in details and several examples are explicitly computed (including nonabelian Chern-Simons theory, where the HJ action turns out to be the gauged Wess-Zumino-Witten action). Perturbative quantization, limited in this note to finite-dimensional targets, is performed in the framework of the Batalin-Vilkovisky (BV) formalism in the bulk and of the Batalin-Fradkin-Vilkovisky (BFV) formalism at the endpoints. As a sanity check of the method, it is proved that the semiclassical contribution of the physical part of the evolution operator is still given by the HJ action. Several examples are computed explicitly. In particular, it is shown that the toy model for nonabelian Chern-Simons theory and the toy model for 7D Chern-Simons theory with nonlinear Hitchin polarization do not have quantum corrections in the physical part (the extension of these results to the actual cases is discussed in the companion paper [arXiv:2012.13983]). Background material for both the classical part (symplectic geometry, generalized generating functions, HJ actions, and the extension of these concepts to infinite-dimensional manifolds) and the quantum part (BV-BFV formalism) is provided.