论文标题

广义通风多项式

Generalised Airy Polynomials

论文作者

Clarkson, Peter A., Jordaan, Kerstin

论文摘要

我们考虑半古典正交多项式相对于广义的通风\ [ω(x; t; t; t,λ)= x^λ\ exp \ left( - \ tfrac13x^3+tx \ tx \ right) \ mathbb {r} $。我们还研究了多项式的零和复发系数。广义的六五弗罗伊德重量\ [ω(x; t,λ)= | x |^{2λ+1} \ exp \ left(-x^6+tx^2 \ right),\ qquad x \ in \ in \ mathbb {r},r},\ r},\ r},\ r},\ r},\ r},\ r},\ r},\ r},\ r},\ r},我们研究的一般体重和我们的拟合性属性或我们的象征性属性,或者我们的拟合性属性属性。这个重量。

We consider properties of semi-classical orthogonal polynomials with respect to the generalised Airy weight \[ω(x;t,λ)=x^λ\exp\left(-\tfrac13x^3+tx\right),\qquad x\in \mathbb{R}^+,\] with parameters $λ>-1$ and $t\in \mathbb{R}$. We also investigate the zeros and recurrence coefficients of the polynomials. The generalised sextic Freud weight \[ω(x;t,λ)=|x|^{2λ+1}\exp\left(-x^6+tx^2\right), \qquad x\in \mathbb{R},\] arises from a symmetrisation of the generalised Airy weight and we study analogous properties of the polynomials orthogonal with respect to this weight.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源